Question number	Answer	Notes	Marks
1 (a) (i) (ii)	geothermal / geothermic; any suitable resource or method; e.g. - wind (turbine) - hydro-electric - waves - tidal - solar (panels) - biofuels/biomass	allow nuclear ignore nuclear ignore unqualified 'water' allow photovoltaic cells, (sun)light allow wood	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(b)	any four from: MP1. thermal energy is transferred from hot rock to cold water OR water heats up; MP2. water molecules gain KE (as they are heated); MP3. steam gains KE as it is heated by the rock; MP4. GPE of steam increases as it gains height; MP5. turbine gains KE from hot water/steam; MP6. generator (coils) transfer KE (from turbine) into electrical energy; MP7. electrical energy is transferred from pump into GPE/KE of water;	allow 'mechanical energy' for KE throughout allow 'heat' for thermal energy allow water turned into steam allow turbine transfers KE to electrical energy total marks $=6$	4

Question number	Answer	Notes	Marks
2 (a) (i) (ii)	light; kinetic;		2
(b) (i)	Power $=$ energy \div time	power $=$ energy \div time energy $=$ power x time time $=$ energy \div power ONLY ACCEPT standard letters ($\mathrm{P}, \mathrm{E}, \mathrm{t}$)	1
(ii)	Substitution into correct equation; Rearrangement; Calculation; e. $\begin{aligned} & 78=\text { energy } \div 10 \\ & 78 \times 10 \\ & 780(\mathrm{~J}) \end{aligned}$	Correct final value gets all three marks irrespective of working. Substitution and rearrangement in either order. Rearrangement may be shown in (b)(i)	3
(c)	Useful energy calculated; Correct substitution in formula; e. $\begin{aligned} & 200-176 \text { OR } 24(\mathrm{~J}) \\ & 24 \div 200(\times 100=12 \%) \end{aligned}$ ALTERNATIVE METHOD energy wasted $=176 \div 200$ OR 88(\%); useful energy transfer $=100-88=(12 \%)$;	Second line of working scores 2 (since the use of 24 implies first line has been correctly carried out) Second line of working scores 2 (since the use of 88 implies first line has been correctly carried out)	2

Total 8 Marks

Question number	Answer	Notes	Marks
3 (a) (i)	any three from: MP1. air becomes hot; MP2. air expands; MP3. air becomes less dense; MP4. air rises;	NOTE cannot award MP4 unless MP2 or MP3 has been given reject for 1 mark(ie MAX mark $=2$) air particles expand OR air particles become less dense	(3)
(ii)	clear inward arrow above the heat absorbing materials; clear up arrow inside the tower;		(2)
(iii)	convection (current);		(1)
(b) (i)	thermal (energy); kinetic (energy);	allow heat or solar or light	(2)
(ii)	(hot) air turns turbines; turbines turn the generator/magnets inside a coil;		(2)
(c) (i)	during the day there is direct heating from the sun/eq;	allow RA	(1)
(ii)	any sensible suggestion e.g. so that convection continues beyond daylight hours; to act as heat source for night time;		(1)
(iii)	any sensible suggestion e.g. water tanks (to provide hot water at night); crops;	Allow photovoltaic cells solar panel (dull) black objects / blocks painted black	(1)

Total for Question 3 = 13 marks

Question number	Answer	Notes	Marks
4 (c) (i) (ii)	work done $=$ force \times distance $($ moved $)$ Substitution; Calculation; e.g. Work $=400000 \times 190$ 76000000 (J)	Accept symbols W=F×d $\mathrm{W}=\mathrm{Fd}$ Accept 76 MJ with correct unit $\begin{aligned} & 7.6 \times 10^{7}(\mathrm{~J}) \\ & 76 \times 10^{6}(\mathrm{~J}) \end{aligned}$	2
(d) (i) (ii)	Substitution into given equation; $\mathrm{P}=\mathrm{W} / \mathrm{t}$ Rearrangement; Calculation; e.g. $1.9=67 \div$ t.............worth 1 $\mathrm{t}=67 \div 1.9$ \qquad worth 2 $=35$ (s) \qquad worth 3 Any one of :- Takes longer /eq; More time needed to raise coal; Load moves more slowly;	No mark for the equation as it is given in QP Substitution and rearrangement in either order Or (in joules and watts) $67000000 \div 1900000$ (35.26) correct answer without working $=3$ Ignore: unqualified comments about the amount of work done	3

Total 15 marks

